中韩高清无专码区2021曰网站_亚洲黄色成人网站_久久久久精品国产_国产区视频在线观看

×

云計算相關的機器學習知識架構

  • 作者:sdfff
  • 來源:互聯(lián)網(wǎng)
  • 瀏覽:100
  • 2020-11-11 15:41:26

云計算將會是未來社會的基礎設施,掌握云計算的技能,對個人來說提升職業(yè)發(fā)展層次,對企業(yè)來說掌握云計算核心技能,將獲得極大競爭力。在云計算中機器學習是重要一環(huán),下面和大家聊聊云計算所需的5種機器學習技能。

計算將會是未來社會的基礎設施,掌握云計算的技能,對個人來說提升職業(yè)發(fā)展層次,對企業(yè)來說掌握云計算核心技能,將獲得極大競爭力。在云計算中機器學習是重要一環(huán),下面和大家聊聊云計算所需的5種機器學習技能。


1. 數(shù)據(jù)工程

如果IT專業(yè)人員想在云平臺實施任何類型的人工智能策略,都需要了解數(shù)據(jù)工程。數(shù)據(jù)工程包含一系列要求數(shù)據(jù)整理和工作流開發(fā)的技能,以及一些軟件架構的知識。

IT專業(yè)知識的不同領域可以分解為IT專業(yè)人員應該完成的不同任務。例如,數(shù)據(jù)整理通常涉及數(shù)據(jù)源標識、數(shù)據(jù)提取、數(shù)據(jù)質量評估、數(shù)據(jù)集成和管道開發(fā),以在生產(chǎn)環(huán)境中執(zhí)行這些操作。

數(shù)據(jù)工程師應該能夠輕松地使用關系數(shù)據(jù)庫、NoSQL數(shù)據(jù)庫和對象存儲系統(tǒng)。Python是一種流行的編程語言,可以與批處理和流處理平臺(如apachebeam)和分布式計算平臺(如apachespark)一起使用。即使IT人員不是精通Python程序的專家,掌握一些Python語言的知識將使其能夠從大量的開源工具中獲取數(shù)據(jù)工程和機器學習。

數(shù)據(jù)工程在所有主要云平臺中都得到了很好的支持。AWS公司提供了全面的服務來支持數(shù)據(jù)工程,例如AWS Glue,適用于Apache Kafka的Amazon Managed Streaming(MSK)和各種Amazon Kinesis服務。AWS Glue是數(shù)據(jù)目錄以及提取、轉換和加載(ETL)服務,其中包括對計劃作業(yè)的支持。MSK是數(shù)據(jù)工程管道的有用構建塊,而Kinesis服務對于部署可擴展流處理管道特別有用。

谷歌云平臺提供了Cloud Dataflow,這是一項托管的Apache Beam服務,可以支持批處理和Steam處理。對于ETL流程,谷歌云平臺提供了基于Hadoop的數(shù)據(jù)集成服務。

Microsoft Azure也提供了幾種托管數(shù)據(jù)工具,例如Azure Cosmos DB、Data Catalog和Data Lake Analytics等。

2. 建立模型

機器學習是一門正在不斷發(fā)展和進步的學科,IT人員可以通過研究和開發(fā)機器學習算法來從事自己的職業(yè)。

IT團隊使用工程師提供的數(shù)據(jù)來構建模型和創(chuàng)建可以提出建議,預測值和對項目進行分類的軟件。重要的是要了解機器學習的基礎知識,即使許多模型構建過程都是在云中自動完成的。

作為模型構建者,需要了解數(shù)據(jù)和業(yè)務目標,制定問題的解決方案,并了解如何將其與現(xiàn)有系統(tǒng)集成的工作。

市場上的一些產(chǎn)品包括谷歌公司的Cloud AutoML,這是可以幫助組織使用結構化數(shù)據(jù)以及圖像、視頻和自然語言來構建自定義模型的服務,而無需對機器學習有更多的了解。 微軟Azure在Visual Studio中提供了ML.NET模型構建器,該模型構建器提供了用于構建、訓練和部署模型的界面。Amazon SageMaker是另一項托管服務,用于在云中構建和部署機器學習模型。

這些工具可以選擇算法,確定數(shù)據(jù)中哪些特征或屬性最有用,并使用稱之為超參數(shù)調整的過程優(yōu)化模型。這些服務擴展了機器學習和人工智能策略的潛在用途。正如人們駕駛汽車不必成為汽車機械工程師一樣,IT專業(yè)人員也不需要獲得機器學習的研究生學位來構建有效的模型。

3. 公平與偏差檢測

算法做出的決策直接而顯著地影響個人。例如,金融服務使用人工智能來做出有關信貸的決策,這可能會無意中對特定人群產(chǎn)生偏見。這不僅可能有拒絕信貸對個人帶來的影響,而且還會使金融機構面臨違反《平等信貸機會法》等法規(guī)的風險。

這些看似艱巨的任務對于人工智能和機器學習模型是必不可少的。檢測模型中的偏差可能需要具有統(tǒng)計和機器學習技能,但是與模型構建一樣,某些繁重的工作可以由機器完成。

FairML是用于審核預測模型的開源工具,可幫助開發(fā)人員識別工作中的偏見。檢測模型偏差的經(jīng)驗還可以為數(shù)據(jù)工程和模型構建過程提供幫助。谷歌云的公平性工具在市場上領先,其中包括假設分析工具、公平性指標和可解釋的人工智能服務。

4. 模型性能評估

模型構建過程的一部分是評估機器學習模型的性能。例如,根據(jù)準確性和召回率對分類器進行評估。回歸模型(例如那些預測房屋出售價格的模型)是通過測量平均誤差率來評估的。

如今表現(xiàn)良好的模型將來可能會表現(xiàn)不佳。問題不在于該模型是否以某種方式被破壞,而是該模型是根據(jù)不再反映其使用環(huán)境的數(shù)據(jù)進行訓練的。即使沒有突然的重大事件,也會發(fā)生數(shù)據(jù)漂移。重要的是評估模型并在生產(chǎn)中繼續(xù)對其進行監(jiān)視。

Amazon SageMaker、Azure Machine Learning Studio和Google Cloud AutoML等服務包括一系列模型性能評估工具。

5. 領域知識

領域知識并不是一種特定的機器學習技能,但它是成功的機器學習策略中最重要的部分之一。

每個行業(yè)都有一定的知識體系,云計算也是,必須以某種能力進行研究,尤其對于構建算法的決策者。機器學習模型受到約束以反映用于訓練它們的數(shù)據(jù)。具有領域知識的IT人員對于知道在哪里應用人工智能,并評估其有效性至關重要。5種機器學習技能就是今天 和大家分享的內(nèi)容,希望對大家有所幫助。

 

 

免責聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權,也不承認相關法律責任。如果您發(fā)現(xiàn)本社區(qū)中有涉嫌抄襲的內(nèi)容,請發(fā)送郵件至:operations@xinnet.com進行舉報,并提供相關證據(jù),一經(jīng)查實,本站將立刻刪除涉嫌侵權內(nèi)容。

免費咨詢獲取折扣

Loading